ON THE UsE OF DIFFERENTIAL CALCULUS
IN THE FORMATION OF SERIES *

Leonhard Euler

§198 Until now we only considered one single application of differential
calculus in the doctrine of series which was the formation of series and which
we mentioned above already, when there was the question how to expand
the fraction whose denominator is an arbitrary power of a certain function
into a series. But this method is similar to that one we already used several
times, where the fraction to be converted into a series is set equal to a certain
series with coefficients to determined from the constituted equality. But this
determination is often simplified tremendously, if, before it is actually done,
the equation is differentiated once and sometimes even twice. Since this
method has very broad applications in integral calculus, let us explain it here
more diligently.

§199 Therefore, at first let us repeat what we discussed above on the expan-
sion of fractions into series without the application of differential calculus. Let
an arbitrary fraction be propounded, i.e.

A+ Bx + Cx? + Dx? + etc.
a + Bx + yx2 + 6x3 + ex* + etc.

which is to be converted into a powers series in x. Assume an undetermined
series for s

_S’

*Original title: “De Usu Calculi Differentialis in Formandis Seriebus”, first published as part of
the book Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
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s =A+ Bx+ Cx2 +Dx° + Ex* + Fx° + Bx° + ete.

Therefore, since, having removed the fraction by multiplication,

A+ Bx + Cx* + Dx® + Ex* + Fx° + Ga® + etc.
= s(a + Bx + yx® + x> +ex* + x° + 5x® +ete),

if the assumed series is substituted for s, the following equation results

A+ Bx +Cx?2 +Dx®> + Ex* + Fx®° + etc

= An + Vax + Cax? + Dax® + Eax* + Fax® + etc.
+UAB + BB +CB + DB +EB et
+Ay +By +& + Dy +etc

+ A5 +B6 + &6 + etc

+ e  + Be + etc.

+A¢  + etc.

Therefore, having equated each term containing the same powers of x, it will
be

Ao — A =0

Ba+AB —B =0

Ca +B+Ay —C =0

Da+C +By+As —D =0

Cx +Dp+Cy +BI+Ae—E=0
etc.

from which equations the assumed coefficients 2, ‘B, €, © etc. are determined,
and so the infinite series

A+ Bx + €x% + Dx® + Ex? + et

equal to the propounded fraction s is found. And this form, if both the
numerator and the denominator of the fraction s consist of a finite number of
terms, contains all recurring series, which were treated in a lot greater detail
above.



§200 But if either the numerator or the denominator or both were raised to
an arbitrary power, then the series is found rather difficultly this way, since
the task, if not a binomial function was raised, becomes very laborious. But
by means of differential calculus this work can be simplified. At first, let the
fraction consist only of a numerator and let

s = (A+ Bx+ Cxx)",

whence the power series in x equal to this power of the trinomial is to be
found; it is plain that the series will be finite, if the exponent n was an positive
integer. Again, assume an indefinite series for s, i.e.

S:2l+%x+€x2+©x3+€x4+3x5+(’5x6+etc.,

whose first term 2 is known to be = A"; for, if one puts x = 0, from the
first propounded form s = A", but from the assumed series s = 2. But this
determination of the first term is to be derived from the nature of the series
itself, if we want to use differentials, since it is not possible to determine the
first coefficient from the differential, as it will be seen soon.

§201 Since S=(A+Bx+ sz)”, taking logarithms, it will be

logs = nlog(A + Bx + Cx?)

and hence, having taken the differentials, one will have

ds  nBdx +2nCxdx
S~ A+Birca (A + Bx + Cx?)

But from the assumed series

ds

dx

= ns(B + 2Cx).

d
ﬁ — B 4+ 2Cx + 3Dx2 + 4Ex> + 55x* + ete.

Therefore, if this series is substituted for g—; and for s the assumed series is
substituted, the following equation will result



AB 4+ 2ACx + 3ADx% + 4AExS + B5AZx* + etc.

+ BB + 2B + 3B + 4BE¢ + etc

+ CB + 2C¢ 4+ 3CD + etc

=nBA+ nBB + nBEC + nB® + nBE& 4 etc
+2nCA +2nCB + 2nC¢  + 2nC® + etc.

Therefore, having equated the terms of the same power of x, it will be

nBA

B=4

¢ _ (1= 1)B%B +2nC
- 2A

o _ (m=2)BE+ (21 —1)CB
- 3A

s — (1=3)BD+(2n-2)Ce
- 4A

s _ (n —4)Be& + (2n — 3)CD
- 5A
etc.

Therefore, since, as we saw before, A = A", it will be B = nA" !B and
hence the remaining coefficients will successively be defined. But the law they
follow is obvious from these formulas which would have remained immensely
obscure, if we would have wanted to actually expand the trinomial.

§202 The same method succeeds, if any polynomial function has to raised to
a certain power. Let

s = (A+Bx+Cx*+ Dx®+ Ex* +etc.)"

and assume

s+ A+ Bx + €x2 + Dx° + ¢x? + etc,;



it will be 2 = A" which value is concluded, if one puts x = 0. Now, having
taken the logarithms, their differentials as before will be found to be

ds nBdx + 2nCxdx + 3nDx?dx + 4nEx3dx + etc.

s A+ Bx 4+ Cx2 + Dx3 + Ex* + etc.

or

d
(A+ Bx+Cx*+ Dx® + Ex* + etc.)ﬁ

= 5(nB + 2nCx + 3nDx? + 4nEx> + etc.).

Therefore, since

d
ﬁ — B 4+ 26x + 302 + 4€Ex° + 55x* + etc,

having substituted these series for s and g—;, it will be

AB + 2ACx + 3ADx* + 4AEx® + 5AZx* + etc
+ BB + 2BC + 3BD + 4B¢ +etc.

+ CB + 2C¢ + 3CD +etc

+ DB + 2DC + etc

+ EB 4 etc

=nBA+ nBB + nBC + nB® + nBE 4+ etc
+2nCA +2nCB + 2nC¢ 4+ 2nC® + etc.

+ 3nDA +3nDB + 3nDC + etc.

+ 4nEA + 4nEB 4 etc.

+ 5nFA  + etc.

Therefore, the following determinations are derived



AB = nB2

2A¢C = (n—1)BB +2nC2A

3AD = (n—2)BC + (2n — 1)CB + 3nDA

4A¢ = (n—3)BD + (2n —2)CE + (3n — 1)DB + 4nEA

5AF = (n—4)BE+ (2n —3)CD + (31 — 2)DC + (4n — 1)EDB + 5nFA

etc,,

whence it becomes clear, how these assumed coefficients 2, B, €, D etc.

depend on each other and are hence determined, since 2 = A".

§203 Since, if the quantity A + Bx + Cx? + Dx> + etc. consists of a finite
number of terms and the number n was a positive integer, any power also
has to consist of a finite number of terms, it is obvious that in this case the
formulas just found must finally vanish and, since all finite terms must occur
until the first vanishes, at the same time all following ones must vanish. Let
us put that the propounded formula A + Bx + Cx? is a trinomial and its cube

is in question, i.e. that n = 3; it will be

2
AB
2AC

3AD =

4A€
5AF
6A®
7A$9
8ATJ

2A3
3B
2BB + 6CA
1B¢ +5C®
0 +4C¢

= — B¢ +3C®

— 2BF +2C¢
— 3B® +2CF

= —4BH 40

and hence 2 = A3

B =3A%B

¢ =3AB*+3A%C
D = B®+6ABC

¢ = 3B*C +3AC?
§ =3BC?

®» =C3

H =0

J=0



Therefore, since already two letters are = 0 and any arbitrary of the following
letters depends on the two preceding ones, it is plain that all following ones
must also vanish. And for this reason the law according to which these
coefficients were found to depend on each other is even more noteworthy.

§204 If n was a negative number such that s becomes equal to a real fraction,
the series will continue to infinity. Therefore, let

—_— 1 .
(a4 Bx 4 yx? + 623 + ext + ete. )’

for its value assumes this series

s =A+ Bx+ €x? +Dx° + &x* + Fx° + ete.

And if in the above formulas one puts «, 3, v, ¢ etc. for the letters A, B, C, D
etc. and at the same time 1 becomes negative, the following determinations of
the coefficients 2, B, ¢, © etc. will result

_ 1
2[ :anzﬁ
x ‘B +npA =0

20€ + (n+1)B +2nyA =0
34D + (n+2)BC + (21 +1)yB + 3102 = 0
40€ + (n+3)BD + (2n+2)y€ + (3n+1)5B + 4ne2 =0

5aF + (n+4)BE + (2n+3)yD + (3n+2)0C+ (4n+1)eB +5nlA =0
etc.

These formulas contain the same law of these coefficients of numbers we
already observed above in the Introductio and whose validity has therefore
been demonstrated rigorously now.

§205 Their nature is the same, if the numerator of the fraction was 1 or even
any power of x, say x™; for, in the second case it will only be necessary to
multiply the series found first 2 + Bx + €x? + Dx> + etc. by x™. But if the



denominator consists of two or more terms, then we do not observe the law
of progression found above: therefore, let us investigate it here by means of
differentiation. Hence let

A+ Bx + Cx? + Dx> + etc.
(& + Bx + yx2 + 6x3 4 ex* + etc.)”
and assume the following series for the value of this fraction

s = A+ Bx + €x* +Dx° + Ex* + §x® +etc;
to define its first term A put x = 0 and from the first expression it will
be s = %, from the assumed series on the other hand s = 2, whence it is
necessary that 2 = 4. Having determined this term, the remaining ones will
be found by means of differentiation.

§206 Having taken logarithms, it will be

logs = log(A + Bx + Cx* + Dx° + etc.)
—nlog(a + Bx + yx* + 5x° + ex* + etc.)
and hence by differentiation this equation will result

ds  Bdx+2Cdx + 3Dx?%dx + etc.
s A+ Bx+Cx2+ D3 +etc.
nBdx + 2nyxdx + 3néx>dx + etc.
&+ Bx + yx% + 6x3 + etc.

and, having got rid of the fractions by multiplication, it will be

)
Ax + ABx + Ayx® + Asx® + etc.
+ Ba + BB+ By +etc| ds

+ Cx +CB et | dx

+ Da  + etc.

Ba + BBx + Byx®> + Box® + etc.
+2Ca +2CB  + 2Cy + etc
+3Da  +3DB  + etc.

+ 4Ex  + etc.




AB + 2Avyx + 3A6x> + 4Aex® + etc.
+ BB +2By + 3B6 +etc

+ CB +2Cy +etc

+ DB+ etc.

/

Since now g—; = B +2Cx + 30x2 4+ 4¢Ex3 + etc., after the substitutions it will
be

AaB +nApA|
— Boch} B
2Aa€ + (n+1)ABB + 2nAyU
+ 0Ba®B + (n—1)BpA o =0
— 2Ca2A
3Aa® + (n+2)ABC + 2n+1)AyB + 3nAoA
+ BaC + nBBB + (2n — 1)By2A 0
- CaB + (n—2)CBA
— 3Da
4A0€ + (n+3)ABD + (2n+2)Av€ + (3n+1)AéB + 411/1821w
+ Ba® + (n+1)BBC + 2nBy®B + (3n —1)BoéA
+ 0Ca€ + (n—1)CBB + (3n—2)CyA p =0.
- 2DaB + (n—3)DpA
— 4Ea
etc.

Therefore, the law according to which these formulas proceed is easily seen;
for, the first line of each equation follows the same law we had in § 204. But
then the coefficients of the second line result, if n + 1 is subtracted from the
above coefficients, and in like manner the third line is formed from the second
line and the following from the upper ones - always by subtracting n + 1; but
the letters constituting each term are immediately obvious considering the
structure of the formulas.



§207 But if also the numerator of a fraction was a certain power, i.e.

(A4 Bx+Cx?+ Dx> +etc.)™
(a4 Bx 4 yx? 4 625 + ext + ete. )’

and one assumes this series

s = A+ Bx + €x% + Dx% + Ex* + ete,,

it will be 2 = ’2—:1 ; but the remaining coefficients will be determined from the
following formulas

AaB + nApA| 0
— mBafl

2A0€ + (M +1)ABB +  2nA9A
— (m—1)Ba®B + (n—m)BpA p =0

— 2mCa2l
BAMD + (n+2)ABE +  (2n+1)AyB + 3nASY
— (m—2)Ba€ + (n —m+1)BBB + (2n —m)ByA| 0
—  (2m—-1)CaB + (n —2m)CpA
- 3mDal
4ARE + (N+3)ABD + (2n+2)AyC+  (Bn+1)ASB + AnAe

—  (2m—2)Ca€ + (n—2m+1)CBB + (n —3m)CyA

)

— (m—=3)Ba® + (n+m—2)BBC + (2n —m +1)ByB + (3n —m)BoA
)

- (3m —1)DaB + (n —3m)DpA

— 4mEoc2l)

etc.

The rule, how these formulas are continued, becomes clear from the inspection
of the above equation more quickly than it can be described by words. While
descending down the column the coefficients are decreased by the difference
m + n; but while proceeding horizontally the differences will continuously be
increased by the difference n — 1.

10




§208 Therefore, this way the theory of recurring series is extended, since we
discovered the previously unknown equations for the coefficients even for
the cases, in which not only the denominator of the fraction was any power,
but also the numerator consists of any arbitrary number of terms, to detect
which equations induction alone did not suffice. But except for the many
applications of recurring series we already explained, they are very useful
to find the sums of certain series approximately; we exhibited a specimen
of this already in the first chapter of this book, where we transformed the
series into another one which often consists of a finite number of terms
by means of the substitution x = ﬁ . And the method could have been
extended further, if other functions were substituted for x. Since then the
law of progression of series, which had to be substituted for the power of x,
was not sufficiently clear, it seemed advisable to mention this generalization
just here, after the mentioned law had already been completely discovered.
Nevertheless, considering this with more attention, we learn that the same
task can be done without this law of progression only by using the method
we used here to investigate the law.

§209 Therefore, let an arbitrary series be propounded, i.e.

s = A+ Bx + Cx? + Dx® + Ex* + Fx° + etc.

which we want to transform into another one, each term of which are fractions
whose denominators proceed according to powers of a formula of this kind

a + Bx + yx? + 5% + etc.

To start from simpler cases, let us put that

A Bx ¢x? N D’
atpx o (atpx)? (et px)®  (a+ pr)t
Having equated the series to this expression, multiply by a + Bx everywhere
and it will be

s = + etc,;

Aa + Ba x + Cax? + Dax® + +etc. N Bx N Cx?
ABx +bB  +CB + tetc. a+px  (a+px)?

+ etc.

Put A = Ax and let

11



AB+Ba = A’

BB + Ca =B’

CB +Dua=C

DB+Ex =D’
etc,;

having divided by x, it will be

A"+ Bx+C'x*+D'x%+etc. = + x + D + etc
a4+ By (a+Bx)? (a+Bx)’ '
Multiply by a + Bx again and having put
A/ﬁ+B/a :A//
B’,B +Ca =B"
C’,B—l—D’zx:C”
etc.
it will be
Cx Dx2
Ala+ A"x+ B'x* + C"x® +etc. =B tc.
o+ x+bB"x"+C"x° +etc +oc+,3x+(uc+,8x)2+ec

Therefore, let B = A’a; and arguing exactly as before, if

A"B+B'a = A" A"B+B"a = A"

B"B +C"'a = B"” B"B +C"a=B"

C'"B+D"a=C" C"B+D"a=C"
etc. etc.,

itwillbe € = A", ® = A”«, € = A" u; therefore, the sum of the propounded
series will be expressed as follows

12



. Ax n Alax n Al ax? n A"
Ca+pBx (a+Bx)? (a+pBx)3 (a+ px)t

This same series would have resulted from the substitution

+ etc.

X oy
= or Xx — .
Y 1—By

§210 This transformation is applied with the greatest success, if the pro-
pounded series A + Bx + Cx? + etc. was of such a nature that it is finally
confounded with a recurring series or, even better, a geometric series resulting
from the fraction fﬁx' For, then the values A’, B/, C/, D’ etc. will finally
vanish and hence the letters A”, A", A" etc. will even more constitute a
highly converging series.

In like manner we will be able to use trinomial and any polynomial deno-
minators which will have an extraordinary use, if the propounded series is
finally confounded with a recurring series. Therefore, having propounded the
series

s = A+ Bx+ Cx®>+ Dx® + Ex* + Fx® + etc.,,
set
A+ By Ql/xz + ;B/XB Ql”x4 + SB”x5 Ql/”x6 + SBWX7

s = + + + + etc.
W px o (w pr @ (a pra @l (at pr 0wt

Multiply by « 4 Bx + yx? everywhere and, having put

Ay+BB+Ca =A" and A = Aa
By +CB+Da=B and B = AB+Ba
Cy+DB+Ea =C/,

having divided by xx, an equation similar to the first will result, i.e.

A+ B'x+C'x*+D'x® + E'x* +ete.
/ !/ " 1 " "
_ A+ B'x + A7 4+ B7x n AT+ B x + ete.
o+ Px+yxx (v +px+yxx)?  (a+ Bx+ yxx)3

13



Therefore, if the operation is done as before by putting

Aly+BB+Ca=A" and A=A
By +CB+Da=B" and B =AB+Ba
C'y+DB+Ea=C"

etc.

and further

A//’)/+B,/IB +C//Dé — AII/ and Ql/l — A//(X
B”fy +C“ﬁ +D"a=B" and B = A”[H—B”oc
C//’)/ +D//IB+E//DC — C/I/

etc.

and by investigating further values in this manner, it will be

o Ax+ (AB+ba)x (A'a+ (A'B+Ba))x?> (A'a+ (A”B+ B"a))x

tc.
o+ Bx + yxx (a4 Bx + yxx)? (a4 Bx + yxx)3 ete

§211 If one puts x = 1, what can be done without loss of generality, because
«, B, v can be taken arbitrarily, and it was

s=A+B+C+D+E+F+G+etc,

having successively put the following values

Ay+BB +Ca = A Aly+B'B +Cua =A"
By +CB + Da = B’ By +C'B+D'a=B"  and so forth
Cy+DB+Eax =C C'y+DB+Ea=C"

etc. etc.

but for the sake of brevity one puts

a+p+y=m,

14



one will obtain the sum of the propounded series expressed this way

A A/ A// A///

B B/ B/I n
+DC< Tt =+ —F + etc.>
m m m m

§212 The same denominators consisting of more terms can be taken, and
since the operation is easily understood from the preceding, let us only expand
the case for the polynomial of degree three. Therefore, let

s=A+B+C+D+E+F+G+etc.

Find the following values

AS+By +CB+Da=A’

Bé +Cy + DB+ Ex =B

Cé6+Dy+EB +Fa =C
etc.

AS+By+CB+Da=A"
B'6 +C'v+D'B+Ewa« =B"
C'6+D'vy+EB+Fa=C_C"

etc.

A/15+B//,Y+C//ﬁ +D//(X:A/N
B//(s +CH’Y +D//IB+EN0C :B/Il
C//(S‘}—D//')’—‘—EH‘B +P//OC :C///

etc.

But then let « + 4+ v + J = m and it will be

15



A Al A// A///
(0(+,3+’)’)<m +ﬁ + % + W + etc.

o B Bl B// BI//
5= (Ix+ﬁ)<m+mz+m3+m4+etc'

C C/ C// C///
+£¥< +72+73+74+etc.
\ m m m m

whence at the same time the progression, if even more parts
the denominator m, is most clearly seen.

)
)
)

are attributed to

§213 And it is not necessary at all that the denominators of the fractions, to
which we reduced the sum of the series, are powers of the same formula

&+ Bx + yx* + etc.,

but this can be varied in each term. In order to clarify this, let us at first only

take two terms and assume that the series

s = A+ Bx + Cx? + Dx® + Ex* + Fx® + etc.

is converted into this series of fractions

A A x A" x2

T aapx AW+ BR) | (ar pr) (W + B ()
At first, multiply both sides by a + Bx and put

AP+ Ba = A’
B +Ca =B and 2= Aa
CB +Da=C'

etc.

and, having divided by x, it will be

A x

n ﬁ”x) + etc.

A"+ B +C'x*+D'x® +etc. =

16
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Further, in like manner by multiplying by a’ 4+ f’'x and then by a” + p”x and
so forth, if one sets

A/ﬁ/ + B/IX/ — A// A//ﬁ// + B//DC” — A/// A///ﬁ/// + B///IXN/ — A////
B/‘B/ + C/UC, — B// B//‘B// + CHOCH — B/l/ B,//‘BN/ + C,//(XU, — B///I etc.
Cl‘B/ + D/ / — C/I CU‘B// + D,/DC// — CII/ C//IIBI/I + D///(X/// — C/I//

etc. etc. etc.
it will be
Ql/ — A/OCI, Ql// — A/I(X/I, Ql/// — A'”tx'” etC.

and hence the propounded series will be converted into this one

_ Aa n Ala'x n Ao x
T atpr  (atpr)(@ +px) | (@t pr)@ + pa) (@ + Bx)

+ etc.,

where the values «, B, o/, B/, a”, B” etc. are arbitrary, but can be taken in such
a way for each case that this new series is highly convergent.

§214 Let us apply this also to trinomial factors and, having propounded an
arbitrary seriess = A+ B+ C+ D+ E+ F + G +etc,, let

Ay+ BB +Ca = A’ Ay + BB +Ca = A"

By +CB +Da =P By +C'B +D'a' =B’

Cy+DB+Ex =C C'yY +DB +Eda =C"

etc. etc.
A//,)// + B//‘BU + C/I(X// — A/// A///,)//// + B///ﬁ/// + CN/(X/I/ — A////
B//,)/// + C/IIB// + D//OC// — B/// B///,)//// _|_ C///ﬁ/// + D/I/DC/// — B////
C//’)/N _|_ D//ﬁ/, _|_ E//“// — C/// C/,/')//// _|_ D,//ﬁ”/ + E///OC/” — C////
etc. etc.

Further, for the sake of brevity put

17



« +p +y =m

DC/ + ﬁ/ + ,)// — m/

06,/ + ’B” + ,y// — m//

IX,/I + ‘BII/ + ,y/l/ — m/ll
etc.

and the sum of the propounded series will be
s DC(A+B) +(X,(A,“|’B,) +[X”(AH+BN) “//l(A//l_{_B///)
oom mm’ mm'm’ mm'm’ ' m’”
A IAI /IA/I /NA///
+% LPA, PAT P

mml mm/ml/ mm/m//m///

+ etc.

+ etc.

§215 Since these formulas extend so far that their use can be seen less clearly,
let us restrict our considerations to the case of the transformation given in §
213 and let x = —1 that one has this series

s=A—-B+C—-—D+E—-F+G—etc.

and set

B _ A — A/ Bl _ 2Al — Al/ B// _ 3Al/ — Al// Bl// _4A/l/ — A//l/
C _ B — B/ C/ _ 2B/ — B// C// _ 3B// — B/// C/// _4B/// — B////
D _ C — C/ D/ _ 2cl — C// D// o 3cl/ — Cl// D/// o 4cll/ — C//l/

etc. etc. etc. etc.

Having found these values, the sum of the propounded series will be equal to
the following series

A Al A// Al// A////

2 231234 2345 23456
Therefore, any propounded series can be transformed into innumerable others
equal to it, among which without any doubt a most convergent series will be
found, by means of which the propounded sum can be found approximately.

etc.

S =
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§216 But let us return to the invention of series whose law of progression is
revealed by differential calculus. Therefore, because this was already achieved
for algebraic quantities, let us proceed to transcendental functions and let the
series equal to this logarithm be in question

s = log(1 + ax + Bx? + 9> + ox* + ex® +etc.);

assume that the series in question reads
s = Ax + Ba? + €x° + Dx* + €x® + Fx® + ete.
Therefore, because from the differentiation of the first equation it follows

ds a4 2Bx +3yx® +46x° + Sex* + etc.
dx 14 ax+ x4 yx3 + 6x* + ex® + etc.”

it will be

d
(1 4+ ax + x> + x4 ox* + etc.)i = &+ 2Bx + 3yx* + 46x° + etc.

But since from the assumed equation

d
ﬁ — A+ 2Bx +3Cx2 + 4Dx3 + 5Ex* + etc,,

having done the substitution, this equation results

A+ 2Bx + 3&x? + 49x° +  5Ex* + etc.
+ Aa +2Ba 4+ 3¢ax  + 4Da  + etc.
+ AB + 2B+ 3¢CB  + etc.

+ ™Ay + 2By + etc

+ AS 4+ etc.

=a+ 2Bx+ 3yx®+ 46x3 +  Sext + etc.

From it one obtains the following determinations

19



A =n

1
B=—-Ax+p
2
2 1
¢ = —IBa— A+
3 2 1
4 3 2 1
etc.

§217 Now, let this exponential quantity be propounded

g — X TP+ +oxt fex tete.

in which e denotes the number whose hyperbolic logarithm is = 1, and
assume this series in question

s =14 Ax +Bx? 4 €x° + Dat + €x° 4 etc.
For, from the case x = 0 it is plain that the first term must be 1. Therefore,
since by taking logarithms,

logs = a + ,sz + yx® + 5x* 4 ex® + 7x® + etc,

having taken the differentials, it will be

ds

dx

But from the assumed equation it will be

= s(a + 2Bx + 3yx? + 45x> + Sex* + etc.)
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o = A+ 2Bx + 3¢x2 + 49x° + 5¢x* + ete

= a + Aax + Bax? + Cax® + Dax* + etc.
428 12UB 4 2€B + 2€B  + etc

+ 37y +3Ay 4+ 3By + etc

4+ 45 + 4A5 + etc

+ b5e + etc,

from which the following determinations of the letters 2, ‘B, €, © etc. result

A =u
1
2 1
3 2 1

4 3 2 1

etc.

§218 If the arc, whose sine or cosine is in question, is expressed by a binomial
or polynomial or even an infinite series, this way one can even express its sine
and cosine by means of an infinite series. But to do this the most convenient
way, it does not suffice to consider only the first differentials, but it is necessary
to use the differentials of the second order. Therefore, let

s = sin(ax + B + x> + 5x* + ex® + etc.)

and assume the series in question to be

s = Ax + Bx? + €x° + Dxt + ¢x° + ete.
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For, it is plain that the first term vanishes; but since one has to descend to
the second differentials, the coefficient 2l also has to be determined from
elsewhere, which will happen, if we put x to be infinitely small. For then,
because of the arc = ax, the sine itself will become equal to it and it will
therefore be 2l = a. Now, for the sake of brevity let us put

z = ax + Bx* + yx° + etc.,

that s = sin z; by differentiating it will be ds = dz cos z and by differentiating
again it will be dds = ddz cosz — dz?sinz. Therefore, since sinz = s and
cosz = %, it will be

_ dsddz

o sdz> and dzdds + sdz® = dsddz.

dds

§219 Let us put that the arc z is only expressed by a binomial and

z = ucx—l—,sz;

it will be

dz = (a + 2Bx)dx

and, having put dx to be constant,

ddz = 2Bdx>

and

dz3 = (a3 + 6a®Bx + 12af2x* + 88°x3)dx°.
Further, because of s = Ax + Bx2 + €x3 + Dx* + etc., it will be

d
ﬁ = A+ 2Bx + 3¢x2 + 4Dx> + etc.

and

445 _ 55 4+ 60x + 120 + ete.
dx?

Having substituted these values in the differential equation, it will be
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dzdds

T3 = 12Bat  2:3Cax+ 3-4Dax’+ 4.5+ 5-6Faxt + ete
+2-1-28B +2-2-3¢B +2:3-4D8 +2-4-5¢8 + etc.

S;;; = + Aad  + B’ cad  + Da®  + ete.
+  6Ax?B  +  6Ba’B +  6Ca’B  + etc

122> + 12Bp*  + etc

+ 8AB  + etc.

% = 2B+ 4B + 6Cp  + 89 +  10€B + etc.

Therefore, the coefficients will be defined the following way:

_ 2B
= oo
An?
¢= 0 =33
o - _ 2¢B  6%p B’
T 4 3-4 3.4
¢ - 4D 12AB*  6Bap <o’
N 5a 4.5 4.5 4.5
5 - 6B  8AB  12BPB  6Cap  Da’
 6a  5-6a 5.6 56 56
s — _ 58P 8B 12¢pp  6Dup  Ea?
T Ja 6-7a 6-7 6-7 6-7

etc.
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Having found these values, it will be

sin(ax + Bx?) = 2Ax + Ba? + €x° + Da* + etc.
while 21 = «.
§220 In like manner, the cosine of any angle is converted into a series; but
since an arc is very rarely expressed by a polynomial, let us show the use of
differential equations for the invention of the series for the cosine of the arc x.
Therefore, let s = cos x and assume
s=1—Ax? + Bx* — €x0 + Dx® — ete.

Since ds = —dxsinx and dds = —dx? cos x = —sdx?, it will be

dds + sdx*> = 0;

after the substitution it will be

dd
Txi — 1.2 + 3-4Bx2—5.6Cx* + 7-8Dx° — etc.
s = 1— Ax2 —Bx* — Cx® + etc.

and by comparing the coefficients it follows

%:3?[4:1 2%3-4
¢ :5936:1 213 6
33:7?:8:1 2-2---8

Therefore, it is plain, what we demonstrated in more detail above already, that

2 4 8

X X X6 X

12717234 123.6 1238 °©

cosx =1—
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the first series for the sine, having put f = 0 and « = 1, will give

. X 3 x° x7 x?
sinx = 1~ +

123712345 123..7 1.2.3..9 °¢

§221 From the well-known series for the sine and cosine the series for the
tangent, cotangent, secant, cosecant of a certain angle are deduced. For, the
tangent results, if the sine is divided by the cosine, the cotangent, if the cosine
is divided by the sine, the secant, if the radius 1 is divided by the cosine, and
the cosecant, if the radius is divided by the sine. But the series result from
these divisions seem to be most irregular; but, with the exception of the series
exhibiting the secant, all remaining the others can be reduced to a simple law
by means of the Bernoulli numbers 2, B, €, © etc. For, since we found above
(§ 127) that

Q(u2+ Bu® + @ + Dt +etc—1—zcot1u
1-2 1-2-3-4 1-2-3---6 1-2-3---8 T 2 2

having put %u = x, it will be

coty — L _ 229x B 248 x3 B 20¢ x5 B 2897 ete
x 1-2 1.2-3.4 1.2.3---6 1-2-3---8 7
and if one puts 1x for x, it will be
2 2x 2B x3 2¢x° 297
cot—x = — — — — - —etc,,

2 x 1.2 1.2-3-4 1-2-3---6 1-2-3---8

§222 But hence the tangent of any arc will be expressed by means of an
infinite series the following way. Since

2tanx
tan2x = ——,
1—tanx
it will be
cot2x = 1 — tanx _ 1cotx — 1tanx
- 2tanx 2 2 2
and hence
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tanx = cotx — 2 cot2x.

Therefore, since

cotx:——zzmx— 24933 B 260 x5 B 2897 Cete
1-2 1-2-3-4 1-2---6 1-2---8 !
2cot2x:1—24mx— 28953 B 212¢x5 B 216947 Cete
X 1-2 1-2-3-4 1-2---6 1-2---8 !

subtracting this series from the first, it will be

22(22 - 1)Ax 2424 —1)Bx®  26(26 —1)exd  28(28 — 1)Dx7

Ny =t 53.4 " 1.2..6 ' 1.2.8

+ etc.

Therefore, if the numbers A, B, C, D etc. found in § 182 are introduced here,
it will be

tan x 2Ax+ 23Bx3 N 25Cx° N 2’Dx? et
n = .
a 1.2 71.2.3.4 " 1.2.36 1.2...8 "¢

§223 But the cosecant will be found the following way. Since

1
cotx =tanx + 2cot2x = —— + 2 cot2x,
cotx

it will be

cot? x = 2cot x cot2x + 1

and having extracted the root

cotx = cot2x + csc2x,

whence

csc2x = cotx — cot2x

and having put x for 2x

1
cscx = cot Ex — cotx.

Therefore, because we have the cotangent, i.e.
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. 1x_ 2 2 2B 2¢x° et
OY =Y 712 1234 126 '
oty — 1_222lx_ 24853 _ 250 ete
“x 1-2 1-2:3:4 1-2---6 v
having subtracted this series from the first, it will be
Lo N 2(2—1)%Ax N 2(2% —1)Bx3 N 2(2° —1)ex° + ete
sex =z 1-2 1-2-3-4 1-2---6 ‘

§224 But the secant cannot be expressed by means of these Bernoulli num-
bers, but it requires other numbers which enter the sums of the odd powers
of the reciprocals. For, if one puts

1 1 1 1 s
1-— §+ g— §+ §—etC.: 4 ?
1 11 B 3
I=3ts prteg = 15 &
1—l+1—1+i—etc—7y H—S
35 759 T 1.2-3-4 26
1—l+1—1+l—etc—L ud
3 5 7797 126 28
1,1 1 1 _ € us
Iyt et g o= 755 70
1 1 1 1 _ Z !
Logntan—7nton e = 1340 7m
etc.,

it will be
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a =1

g=1

v =5

6 =61

e = 1385

¢ = 50521

n = 2702765

6 = 199360981

1 = 19391512145

» = 2040487967544 1etc.

and from these values one will obtain

B 0

secx =« + xx +

1-2 1.2.3.4"

44

1.

x6+

1-

%8 + etc.

...8

§225 To show the connection of this series to the numbers «, B, 7, J etc., let
us consider the series treated above [§ 33]

7T 1+ 1 1 n 1 ‘
- - _ — — etc.
nsin>mt  m n-m m+n 2n-m 2n+m 3n—m
Putm = %n — k and it will be
AN SR S
2ncos§_n—2k n+2k 3n—2k 3n+2k 5n-—2k '
Let%”:xorkrc:nx;itwillbe
7T 7T 7T T T
—secx = — -
2n nwt—2nx nmn+2nx 3nm—2nx  3nm+2nx  bnm —2nx
or
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2 2 2 2 2

_ _ — tc.
secx 7r—2x+7r—|—2x 31— 2x 37‘[+2x+57't—2x—i_eC

or
sect — 4 B 4.3 4.5 B 4.7 + et
o2 —4x2 972 —4xx 2572 —4dxx 49712 — x2 '

If now each terms is converted into series, it will be

1
—33—|—53—73—|—93—etc.>

2644 1 1 1 1
“r? 1—3*54—5*5—%4—9*5—6’[0

etc.;

if the values assigned above are substituted for these series, the same series
we gave for the secant will result.

§226 Therefore, at the same time the law is plain, according to which the
numbers &, B, v, 6 etc. appearing in the expressions of the sums of the odd
powers, proceed. For, since

_ 1 _ B > Y 4
SeCX = osx YT TI Y T3 dt T1a 6

it is necessary that this series is equal to the fraction

x® + etc.,

1

xx x4 X6 x6
1-35+ 133 156t 128 —ete

4

therefore, having equated the two expressions, it will be
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_ B 2 Y 4 Y 6 8
L=t Y T o3 P g ¥t 12 g © tete
o« B _ g _ 4 _
1.2 1.21-2 1.2-1---4 1-2-1---6 etc.

o B v B
1234 1412 T1 411 "°¢
o p
" 126 T1.61.2
+ 4 + etc
1-2---8
whence these equations follow
a=1
2.1
p=17%
_ 43, 4:3-2.1
T=12P 1323
6-5 6543 6---1
0=12" 123411 6“
87, 8765 8. 3ﬁ_8--1“
1.2° 12347160 1
etc.

And from these formulas the values of these letters were found which we
exhibited in § 224 and by means of which the sums of the series contained in
this form
1 1 1 1
1—37+§—%+97—etC,
if n was an odd number, can be expressed.
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